3.287 \(\int \frac{\sqrt{c+d x^3}}{x^4 (8 c-d x^3)} \, dx\)

Optimal. Leaf size=81 \[ \frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{32 c^{3/2}}-\frac{5 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{96 c^{3/2}}-\frac{\sqrt{c+d x^3}}{24 c x^3} \]

[Out]

-Sqrt[c + d*x^3]/(24*c*x^3) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(32*c^(3/2)) - (5*d*ArcTanh[Sqrt[c + d*
x^3]/Sqrt[c]])/(96*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0722102, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {446, 99, 156, 63, 208, 206} \[ \frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{32 c^{3/2}}-\frac{5 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{96 c^{3/2}}-\frac{\sqrt{c+d x^3}}{24 c x^3} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^3]/(x^4*(8*c - d*x^3)),x]

[Out]

-Sqrt[c + d*x^3]/(24*c*x^3) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(32*c^(3/2)) - (5*d*ArcTanh[Sqrt[c + d*
x^3]/Sqrt[c]])/(96*c^(3/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^3}}{x^4 \left (8 c-d x^3\right )} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{x^2 (8 c-d x)} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{c+d x^3}}{24 c x^3}+\frac{\operatorname{Subst}\left (\int \frac{5 c d+\frac{d^2 x}{2}}{x (8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{24 c}\\ &=-\frac{\sqrt{c+d x^3}}{24 c x^3}+\frac{(5 d) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^3\right )}{192 c}+\frac{\left (3 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{64 c}\\ &=-\frac{\sqrt{c+d x^3}}{24 c x^3}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{96 c}+\frac{(3 d) \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{32 c}\\ &=-\frac{\sqrt{c+d x^3}}{24 c x^3}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{32 c^{3/2}}-\frac{5 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{96 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0294411, size = 81, normalized size = 1. \[ \frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{32 c^{3/2}}-\frac{5 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{96 c^{3/2}}-\frac{\sqrt{c+d x^3}}{24 c x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^3]/(x^4*(8*c - d*x^3)),x]

[Out]

-Sqrt[c + d*x^3]/(24*c*x^3) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(32*c^(3/2)) - (5*d*ArcTanh[Sqrt[c + d*
x^3]/Sqrt[c]])/(96*c^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.012, size = 511, normalized size = 6.3 \begin{align*} -{\frac{{d}^{2}}{64\,{c}^{2}} \left ({\frac{2}{3\,d}\sqrt{d{x}^{3}+c}}+{\frac{{\frac{i}{3}}\sqrt{2}}{{d}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \right ) }+{\frac{1}{8\,c} \left ( -{\frac{1}{3\,{x}^{3}}\sqrt{d{x}^{3}+c}}-{\frac{d}{3}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ){\frac{1}{\sqrt{c}}}} \right ) }+{\frac{d}{64\,{c}^{2}} \left ({\frac{2}{3}\sqrt{d{x}^{3}+c}}-{\frac{2}{3}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ) \sqrt{c}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)^(1/2)/x^4/(-d*x^3+8*c),x)

[Out]

-1/64*d^2/c^2*(2/3*(d*x^3+c)^(1/2)/d+1/3*I/d^3*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*
c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c
)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^
(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2
*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c
)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*
(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/
3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+1/8/c*(-1/3*(d*x^3+c)^(1/2)/x^3-1/3*d*arctanh((d*x^3+c)^(1/2)/c^(1/2))
/c^(1/2))+1/64*d/c^2*(2/3*(d*x^3+c)^(1/2)-2/3*arctanh((d*x^3+c)^(1/2)/c^(1/2))*c^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{\sqrt{d x^{3} + c}}{{\left (d x^{3} - 8 \, c\right )} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x^4/(-d*x^3+8*c),x, algorithm="maxima")

[Out]

-integrate(sqrt(d*x^3 + c)/((d*x^3 - 8*c)*x^4), x)

________________________________________________________________________________________

Fricas [A]  time = 1.63788, size = 462, normalized size = 5.7 \begin{align*} \left [\frac{3 \, \sqrt{c} d x^{3} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 5 \, \sqrt{c} d x^{3} \log \left (\frac{d x^{3} - 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right ) - 8 \, \sqrt{d x^{3} + c} c}{192 \, c^{2} x^{3}}, \frac{5 \, \sqrt{-c} d x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right ) - 3 \, \sqrt{-c} d x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) - 4 \, \sqrt{d x^{3} + c} c}{96 \, c^{2} x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x^4/(-d*x^3+8*c),x, algorithm="fricas")

[Out]

[1/192*(3*sqrt(c)*d*x^3*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 5*sqrt(c)*d*x^3*log((d
*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 8*sqrt(d*x^3 + c)*c)/(c^2*x^3), 1/96*(5*sqrt(-c)*d*x^3*arctan(s
qrt(d*x^3 + c)*sqrt(-c)/c) - 3*sqrt(-c)*d*x^3*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) - 4*sqrt(d*x^3 + c)*c)/(c
^2*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{\sqrt{c + d x^{3}}}{- 8 c x^{4} + d x^{7}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)**(1/2)/x**4/(-d*x**3+8*c),x)

[Out]

-Integral(sqrt(c + d*x**3)/(-8*c*x**4 + d*x**7), x)

________________________________________________________________________________________

Giac [A]  time = 1.14159, size = 104, normalized size = 1.28 \begin{align*} \frac{1}{96} \, d{\left (\frac{5 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-c}}\right )}{\sqrt{-c} c} - \frac{3 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} c} - \frac{4 \, \sqrt{d x^{3} + c}}{c d x^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x^4/(-d*x^3+8*c),x, algorithm="giac")

[Out]

1/96*d*(5*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c) - 3*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c)
- 4*sqrt(d*x^3 + c)/(c*d*x^3))